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Abstract

In this article we show a simple but important relationship between

the put-call transformation and the put-call symmetry as well as extend

the relationship to also hold for single and double barrier options. These

new barrier transformations give new insight in barrier option valuation.

Using the transformation it is possible to value a barrier put option from

a barrier call option formula and vice versa. Our results also extend the

possibilities for static hedging and closed form valuation for many new

exotic options. The new relationships also make us able to value a double

barrier option in a simple and intuitive way, only using a few single barrier

options.

1 Plain vanilla put-call transformation

Assume the underlying asset follows a geometric Brownian motion dS = �Sdt+

�Sdz, where as usual � is the expected instantaneous rate of return on the

underlying asset, � is the instantaneous standard deviation of the rate of return,

and dz is a standard Wiener process. Given this the American plain vanilla put-

call transformation, �rst published by Bjerksund and Stensland (1993), states

that

C(S;X; T; r; b; �) = P (X;S; T; r� b;�b; �); (1)

Where S is the asset price, X the strike price, T time to maturity, r the risk

free rate, and b the cost of carry. In other words the value of an American call

option is similar to the value of an American put option with asset price equal

to the strike price, strike equal to the asset price, risk-free rate equal to r�b and

cost of carry equal to �b. This relationship naturally also holds for European

options. The put-call transformation gives insight in the connection between

put and call options and makes us able to price a put option from the formula

of a call option and vice versa.

However, the usefulness of this transformation for static hedging and valuation

of a large class of exotic options has �rst recently come to attention in the form of

the so-called put-call symmetry. We can easily rewrite the payo� function from

a call (or similarly for a put) option, max(S � X; 0), into X
S
max

�
S2

X
� S; 0

�
.

Then by combining this with the put-call transformation we simply get the

put-call symmetry

C(S;X; T; r; b; �) =
X

S
P

�
S;

S2

X
;T; r� b;�b; �

�
; (2)

Thus the more recently published European and American put-call symmetry

(see Carr and Bowie (1994), Carr, Ellis, and Gaupta (1998), Carr and Chesney

(1998), Haug (1997)) is actually no more than a simple rewriting of the put-

call transformation. However, for practitioners/�nancial engineers this small
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rewriting of the put-call transformation is actually very useful because it is

�rst in the symmetry form the put-call transformation really becomes useful for

static hedging and valuation of many exotic options on the basis of plain vanilla

options1. The main reason for this is that it is not possible to buy for instance

a put option with asset price X when the asset price is S (assuming X <> S).

To buy X
S

number of put options with strike S2

X
and asset price S is on the

other hand a real possibility in the options market2.

2 Barrier Put-Call Transformation

Barrier options have become extremely popular and certainly constitutes one

of the most popular class of exotic options. Closed form solutions for valuation

of single barrier options have been published by Merton (1973), Reiner and

Rubinstein (1991), and Rich (1994), and for double barrier options by Ikeda

and Kuintomo (1992), and Geman and Yor (1996). Further, the relationship

between in and out options are well known as the in-out barrier parity. A long

out option is equal to a long plain vanilla option plus short an in option.

in this paper we go one step further and state the put-call transformation for

European and American single and double barrier options. Given that the plain

vanilla put-call transformation holds the intuition behind the put-call barrier

transformation is quite intuitive. The only di�erence between a plain vanilla

put-call transformation and a put-call barrier transformation is the probability

of barrier hits. Given the same volatility and drift towards the barrier the

probability of barrier hits only depend on the distance between the asset price

and the barrier. In the put call transformation the drifts are di�erent on the call

and the put, b versus �b. However, given that the asset price of the call is above

(below) the barrier and the asset price of the put is below (above) the barrier

this will naturally ensure the same drift towards the barrier. In the case of a

put-call transformation between a down-call with asset price S and an up-put

with asset price X it must be that

ln

�
S

Hc

�
= ln

�
Hp

X

�
(3)

where the call barrier Hc < S and the put barrier Hp > X. In the case of

a put-call transformation between an up-call and a down-put the barriers and

strike must satisfy;

ln

�
Hc

S

�
= ln

�
X

Hp

�
(4)

where Hc > S and Hp < X. In both cases we can rewrite the put barrier as
SX
Hc

. For standard barrier options the put-call transformation and symmetry

between in-options must from this be given by

1It is worth mentioning that when used for static hedging of most path dependent options
the published put-call transformation only holds when cost-of-carry is zero (i.e. options on
futures and forwards). This is because one doesn't know exactly when the barrier will be hit.

2At least in most OTC option markets.
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Cdi(S;X;H; r; b) = Pui

�
X;S;

SX

H
; r� b;�b

�
(5)

=
X

S
Pui

�
S;

S2

X
;
S2

H
; r � b;�b

�

Cui(S;X;H; r; b) = Pdi

�
X;S;

SX

H
; r� b;�b

�
(6)

=
X

S
Pdi

�
S;

S2

X
;
S2

H
; r � b;�b

�

where Cdi stands for a down-and-in call, and Cui stands for a up-and-in call

(similarly for puts). The put-call transformation between out barrier options is

given by:

Cdo(S;X;H; r; b) = Puo

�
X;S;

SX

H
; r � b;�b

�
(7)

=
X

S
Puo

�
S;

S2

X
;
S2

H
; r � b;�b

�

Cuo(S;X;H; r; b) = Pdo

�
X;S;

SX

H
; r � b;�b

�
(8)

=
X

S
Pdo

�
S;

S2

X
;
S2

H
; r � b;�b

�

and for double barrier options we have:

Co(S;X;L; U; r; b) = Po

�
X;S;

SX

U
;
SX

L
; r � b;�b

�
(9)

=
X

S
Po

�
S;

S2

X
;
S2

U
;
S2

L
; r� b;�b

�

Ci(S;X;L; U; r; b) = Pi

�
X;S;

SX

U
;
SX

L
; r � b;�b

�
(10)

=
X

S
Pi

�
S;

S2

X
;
S2

U
;
S2

L
; r � b;�b

�

where L is the lower barrier and U is the upper barrier level. These transfor-

mations also hold for partial-time single and double barrier options described

by Heynen and Kat (1994) and Hui (1997).
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These new transformation/symmetry relationships give new insight and should

be useful when calculating barrier option values. If one has a formula for a

barrier call, the relationship will give the value for the barrier put and vice

versa. The relationship also gives new opportunities for static hedging and

valuation of 2. generation exotic options. An example of this would be a �rst-

down-then-up-and-in call. In a �rst-down-then-up-and-in call Cdui(S;X;L; U )

the option holder gets a standard up-and-in call with barrier U (U > S) and

strike X if the asset �rst hit a lower barrier L(L < S < U ). Using the up-

and-in call down-and-in put barrier symmetry described above we can simply

construct a static hedge and thereby a valuation formula for this new type of

barrier option;

Cdui(S;X;L; U ) =
X

L
Pdi

�
S;

L2

X
;
L2

U

�
(11)

In other words to hedge a �rst-down-then-up-and-in barrier call option all we

need to do is buying X
L
number of standard down-and-in puts with strike L2

X
and

barrier L2

U
. If the asset price never touche L both the �rst-down-then-up-and-in

call and the standard down-and-in put will expire worthless. On the other hand,

if the asset price hits the lower barrier L the value of the X
L
down-and-in puts

will be exactly equal to the value of the up-and-in call. So in that case all we

need to do is sell the down-and-in put and simultaneously buy the up-and-in call.

As we can see we have created a perfect static hedge for this new barrier option

using only standard barrier options and the barrier transformation principle.

In a similar fashion one can easily construct static hedges and valuation formulas

for a large class of new barrier options.

3 Simple, intuitive and accurate valuation of

double barrier options

Ikeda and Kuintomo (1992), and Geman and Yor (1996) have developed closed

form formulas for double barrier options using quite complex mathematics.

An alternative is to value double barrier options using the single barrier put-call

transformations in combinationwith some simple intuition. The idea can best be

illustrated by �rst trying to construct a static hedge for a double barrier option

by using only single barrier options. Let's assume we want to try to statically

hedge a double barrier knock-in-call option with lower barrier L, upper barrier

U , and strike price X.

A natural �rst step could be to buy an up-and-in-call and a down-and-in-call.

As long as the asset not touch any of the two barriers, or only touch one of the

barriers this hedge works �ne. The problem with this strategy is naturally that

if the asset touch both barriers we end up with two call options instead of one.

In other words we are over hedged. This makes our static hedge unnecessary

expensive.

To avoid this we could simply add a short position in a �rst-up-then-down-and-

in-call and a �rst-down-then-up-and-in-call. In this case when the asset for the
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�rst time hits a barrier we get a call. Then if the asset should hit the other

barrier we get two new options at the same time; a long call plus a short call

which cancel each other out. We are only left with the call we got at the �rst

barrier hit as we should.

The problem with this strategy occurs if the asset �rst hits the upper barrier,

then hit the lower barrier, and then hits the upper barrier. Or alternatively, if

the asset �rst hits the lower barrier, then hits the upper barrier, and then hits

the lower barrier. In any of these cases we will end up with zero call options.

To avoid this we could simply add a long position in a �rst-down-then-up-then-

down-and-in call plus a �rst-up-then-down-then-up-and-in call.

Now we will �rst get into trouble if the asset �rst hits the upper barrier, then the

lower barrier, then the upper barrier and then the lower barrier. Or alternatively

if the asset �rst hits the lower barrier, then hits the upper barrier, then hits the

lower barrier, and then hits the upper barrier. To avoid this we could simply

add a short position in a �rst-up-then-down-then-up-then-down-and-in and a

�rst-down-then-up-then-down-then-up-and-in call.

Continuing this way one will soon �nd that a double barrier option is nothing

more than an in�nite series of the new type of barrier options introduced in

section 2. Since these new types of barrier options (e.g. a �rst-down-then-

up-then-down. . . and-in) can be constructed simply by using the single barrier

put-call transformation, a double barrier option is nothing more than an in�nite

series of single barrier options;

Double barrier option =

1X
i=1

Single barrier options (12)

To value an in�nite series is naturally umpractical if not impossible. However

the probability of the asset �rst touching the upper barrier then touching the

lower barrier, then touching the upper barrier, then touching the lower bar-

rier. . . ..then touching the upper barrier is in most cases fast getting extremely

small. Numerical investigation shows that our method converges very fast in

most cases only using the �rst 3 or 4 correction terms. Using four terms, the

value of a double barrier in-call option can be approximated by

Ci(S;X;L; U ) � Cui(S;X;U ) +Cdi(S;X;L) (13)

�

X

U
Pui

�
S;

U2

X
;
U2

L

�
�

X

L
Pdi

�
S;

L2

X
;
L2

U

�

+
U

L
Cdi

�
S;

L2X

U2
;
L3

U2

�
+

L

U
Cui

�
S;

U2X

L2
;
U3

L2

�

�

LX

U2
Pui

�
S;

U4

L2X
;
U4

L3

�
�

UX

L2
Pdi

�
S;

L4

U2X
;
L4

U3

�

+
U2

L2
Cdi

�
S;

L4X

U4
;
L5

U4

�
+
L2

U2
Cui

�
S;

U4X

L4
;
U5

L4

�

and similarly the value of a double barrier in-put can be approximated by
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Pi(S;X;L; U ) � Pui(S;X;U ) + Pdi(S;X;L) (14)

�

X

U
Cui

�
S;

U2

X
;
U2

L

�
�

X

L
Cdi

�
S;

L2

X
;
L2

U

�

+
U

L
Pdi

�
S;

L2X

U2
;
L3

U2

�
+

L

U
Pui

�
S;

U2X

L2
;
U3

L2

�

�

LX

U2
Cui

�
S;

U4

L2X
;
U4

L3

�
�

UX

L2
Cdi

�
S;

L4

U2X
;
L4

U3

�

+
U2

L2
Pdi

�
S;

L4X

U4
;
L5

U4

�
+

L2

U2
Pui

�
S;

U4X

L4
;
U5

L4

�

The value of double barrier out-options can easily be found using the out-in

barrier parity.

Table 1 shows the di�erence in value between the Ikeda and Kuintomo (1992)3

model and our approximation.

Table 1: The Ikeda and Kunitomo model minus our intuitive double barrier

model (using 4 terms in our model and 20 leading terms in the Ikeda and

Kuntimo formula), (S = 100, X = 100, r = 0:10, b = 0)
T = 0:25 T = 1

L U � = 10% � = 20% � = 30% � = 10% � = 20% � = 30%

50 150 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
60 140 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
70 130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
80 120 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
95 105 0.000000 0.000000 -0.001244 0.000000 -0.032843 -0.518185

From all the zeros in the table we can see that the two models must give almost

identical values for most parameters. First when the volatility is quite high in

combination with long time to maturity, and the di�erence between the lower

and upper barrier are quite small our model gets into trouble. The reason for

this is simply because in that case the probability for the asset price to hit

the lower and upper barriers many times in succession increases. Using only 4

terms our model will get into trouble if the asset goes back and forth between

the lower and upper barriers more than 4 times in a row. Then one ends up

with two call options instead of one.

In other words, if the probability of many sequential barrier hits is large our

missing correction terms will have signi�cant value. In all other cases our for-

mula will work �ne. One solution to this is naturally to just add more and more

correction terms as the probability of hitting both barriers many times sequen-

tial increases. However, intuitively this must also imply that the probability of

at least one barrier hit must be very high. In that cases the value of the double

barrier option must be very close to that of a plain vanilla option.

3Assuming 
at barriers. The Ikeda and Kuintomo (1992) formula can also be used for
valuation of double barrier options with curved barriers
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Another observation is that our barrier approximation always will overprice dou-

ble barrier in-options as long as we have even correction terms (2, 4, 6. . . 14).

The reason for this is that even correction terms implies that the last correc-

tion term always will be a long position. Again, this means that there exists a

probability of ending up with two options instead of one as we should. Com-

bining these observations we can simply increase the accuracy of our model by

calculating it's value as the minimum of a plain vanilla option and the double

barrier approximation with a few even correction terms, (e.g. 2, 4, or 6). Be-

cause the value of a double barrier option naturally never can be higher than a

plain vanilla option this can do no harm, but only increase the accuracy. Using

four correction terms the value of the double barrier in-call option can now be

rewritten as

Ci(S;X;L; U ) � min

�
C(S;X; T );Cui(S;X;U ) +Cdi(S;X;L) (15)

�

X

U
Pui

�
S;

U2

X
;
U2

L

�
�

X

L
Pdi

�
S;

L2

X
;
L2

U

�

+
U

L
Cdi

�
S;

L2X

U2
;
L3

U2

�
+

L

U
Cui

�
S;

U2X

L2
;
U3

L2

�

�

LX

U2
Pui

�
S;

U4

L2X
;
U4

L3

�
�

UX

L2
Pdi

�
S;

L4

U2X
;
L4

U3

�

+
U2

L2
Cdi

�
S;

L4X

U4
;
L5

U4

�
+
L2

U2
Cui

�
S;

U4X

L4
;
U5

L4

��

Using this modi�ed version of our formula the largest mispricing in table 1

goes from �0:518185 to only �0:000024 and all the other mispricings gets even

smaller. Extensive numerical investigation shows that this method is extremely

accurate and robust for all types of input parameters. Even dropping the last

two correction terms, numerical investigation indicates that our formula should

be more than accurate enough for any practical purpos. For instance, if we

now increase the volatility further in combination with longer time to maturity,

and decrease the di�erence between the two barriers this will only increase the

accuracy of our formula.

4 Conclusion

We have extended the put call transformation principle to also hold for barrier

options. These new transformation relationships give new insight and are useful

when calculating barrier option values. If one has a formula for a call, the

relationship will give you the value for the put and vice versa. The relationships

also give new opportunities for static hedging and valuation of new types of

exotic options using standard single and double barrier options. Finally we

have shown that the value of a double barrier option in a simple and intuitive

way can be valued as the minimum of a series of a few single barrier options

and a plain vanilla option.
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