
discoveries of our time. Besides having changed
our view of the universe, it has practical implica-
tions for nuclear physics, particle physics, naviga-
tion, metrology, geodesy, and cosmology (see
Barone (1998) for more details). Strange enough,
with the thousands of papers1 and books written
about relativity and its various implications little
or nothing is written about its implications for
mathematical finance.2 In the Wall Street Journal
November 21, 2003, I am reading about relativity
and how physicists are looking at how we might
travel through time. Disappointingly not even in
the Wall Street Journal is there a single word on
how relativity can, will and possibly already is
affecting quantitative finance.

In this article I take a look at relativity theory
and its implications for mathematical finance.
Combining relativity theory with finance, I am
naturally running the risk of being considered a

crank, but what the heck—-I can afford to take
that chance: I’m not a Professor who has to pub-
lish in conservative academic journals (publish
or perish) to keep a low-paid job.

The present theories of mathematical
finance hold only for a society in which we all
travel at approximately the same speed and are
affected by approximately the same gravitation.
It is reasonable to believe that the human race
will develop fast moving space stations used for
interstellar travel in the future. There is also a
positive probability that we one day will find
intelligent life other places in the universe
where the gravitation is incredibly much higher
than on earth—-or maybe aliens will first will
find us. Going from a world economy to a uni-
verse economy will have important implications
for financial calculations, just like results for a
model of a closed economy might not carry

2 Wilmott magazine
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Abstract
Little or nothing is written about relativity theory in relation to mathematical finance. I will here explore relativity theory’s implications for mathematical finance. One of the
main results from my reflections on this topic is that the volatility σ is different for every observer. However, what we will call volatility-time σ

√
T is invariant, that is the same for

any observer. Further, we will see how relativity theory possibly will lead to fat-tailed distributions and stochastic volatility. Parts of the article are admittedly speculative, but not
even mathematical finance can escape the fundamental laws of physics.
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1 Introduction
The wind was blowing through my hair, I was
pushing my Harley to the limit. At 120 miles per
hour the 50 miles trip felt like nothing, I slowed
down and stopped in front of my girlfriend. She
had been waiting on the side walk with a clock
we synchronized with my wristwatch just before
the ride. She gave me her clock. I compared it
with my wristwatch. Shit, they showed exactly
the same time, not even one hundredth of a sec-
ond in difference, where was the time dilation?
Well this was some years ago before I understood
my bike actually hardly moves and that my
wristwatch was not accurate enough to measure
the slight time dilation that should be there as
predicted by the special theory of relativity.

Einstein’s special and general relativity theo-
ries are considered among the greatest scientific
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through to an open economy. Almost every for-
mula and theory in mathematical finance has to
be modified or generalized. Generalization of
the mathematical finance theory to hold in any
part of the universe at any velocity and gravita-
tion is what I will coin Space-time Finance.

Most traders I know are typically concerned
only with next minute (spot traders), a day, a week
or maximum a few years in the future. When it
comes to non-financial aspects of life most people
appear to be interested in the time frame of a few
generations at most. Developing spacecraft travel-
ing at speeds close to the speed of light or making
contact with intelligent life could easily take
many more generations. For this reason I expect
that this article in all likelihood will have little or
no practical relevance to readers of our time.
However it will hopefully be of interest to a few
traders far into the future, picking up a dusty
copy of Wilmott magazine. Moreover, this article
could hopefully have some entertainment value
for the curious mind. Without any direct compar-
ison, recall that Bachelier (1900) theory on option
pricing collected dust for more than 50 years
before attracting wide attention. There are also
examples in physics of crazy ideas that later made
a real-world impact: In 1895 the president of the
Royal Society (in science), Lord Kelvin, claimed
that “heavier-than-air flying machines are impos-
sible.’’ His claim was based on our best under-
standing of physics at that time. Just a few years
later in 1903, as we all know, the Wright brothers
had achieved the “impossible.” So travel at speeds
significantly close to that of light may not be that
far fetched after all.

With billions of galaxies, more solar systems,
and probably even more planets there could easily
be civilizations on other planets that are far more
advanced than ours. Interestingly, some of these civ-
ilizations are possibly already using space-time
finance. Not having developed colonies traveling at
speeds significant to the speed of light is no excuse
for us not to start developing the mathematical
finance necessary for participating in a universe
economy—-especially considering the cost when
some of us are nutty enough to consider it a fun
spare time activity.

What is the difference between reality and fic-
tion? In fiction everything has to make sense. I
will tell you about the reality.

Wilmott magazine 3

1.1 The Special Relativity Theory

The Relativity theory is far from a one man
show, even if Einstein played a major role in the
development of the theory as we know it today.
When Einstein wrote his 1905 paper on special
relativity, the basis for his theory was already
laid out by giants like Larmor, Fitzgerald,
Lorentz, and Poincaré. There is no doubt that
Einstein, with his very intuitive mind, came up
with many key insights for the foundation of
relativity theory. For example Einstein was the
first to properly understand the physical impli-
cations of time dilation.3 Lorentz himself initial-
ly did not believe in time dilation, which was a
result of his own transformation4 (Lorentz
(1904)), that Einstein based much of his work
on. Lorentz himself said

“But I never thought this had anything to do
with real time. . .there existed for me only one
true time. I considered by time-transformation
only a heuristic working hypothesis. . .”

In his 1909 paper Lorentz took time dilation seri-
ously and formulated a relativity theory closely
related to Einstein’s special relativity theory.
Well, more on this later.

Einstein based his special relativity theory on
two postulates (Einstein 1905, Einstein 1912)

1. Principle of special relativity: All inertial observers
are equivalent.

2. Constancy of velocity of light: The velocity of
light is the same in all inertial systems.

Einstein accepted that the speed of light had to be
constant in any frame (we will discuss this in
more detail later), and he figured out that some-
thing else had to vary: time. Time dilation will
play a central role in space-time finance. Even
though time dilation is covered in any basic book
on special relativity, we will spend some time on
the basics here before we move on to space-time
finance. Even before that a few basic definitions
are in order:

Reference frame In most of our examples we
will use two reference frames. First, a stationary
inertial frame, which obeys Newton’s first law
of motion. Any object or body in such a frame
will continue in a state of rest or with constant

velocity and is not acted on by any forces exter-
nal to itself. In most examples we will for sim-
plicity assume the earth and everything on it is
a stationary inertial frame. We will later loosen
up on this assumption.

Second, as a moving frame we will typically
use a spacecraft leaving and returning to earth.
This is actually a non-inertial frame as the space-
craft must accelerate and decelerate. To begin
with we will assume this is an inertial frame. We
will later look at more realistic calculations where
we directly take account for the acceleration.

Observer With observer we think about any-
one in the same frame. This can be a person (pos-
sibly hypothetical) or a clock, or even a computer
calculating the volatility of a stock.

Asset frame Where in space-time does an asset
trade? One could possibly think that the proper-
ties of a financial asset are independent of where
the asset trades, since it is not a physical object.
This holds only because all humans at the cur-
rent time are in approximately the same frame.
In space-time finance the exact space-time loca-
tion of the trade will have an impact. For a gold
futures listed at COMEX (the metal exchange) the
exact location will typically be in the trading pit
in New York, Manhattan downtown. For an elec-
tronic market the trade would typically take
place in a computer. The computer will be in a
place in space and the trade will be executed at a
given time inside the computer. Thus, any trade
takes place in an exact point in space-time. After
the computer accepts the trade it is too late for
anyone to cancel it, even if the trader is far away
and possibly not even aware if the trade has been
carried out yet.

Buying or selling a securities in a location
very far from you could make it difficult to com-
municate with each other, due to the maximum
speed limit of any signal. For example how could
you trade a security on earth if you lived one
light year away in a space station? This could eas-
ily be solved by having someone close to the loca-
tion managing your investment.

Proper time and proper volatility The proper
time is the time measured by one and the same
clock at the location of the events. That is we can
think about a clock “attached” to the object or
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even the asset we are considering. For example a
wristwatch worn by the same person could meas-
ure the proper time for a lifespan of this person,
another name for proper time is wristwatch time.
“Attaching” a clock to an asset could be done for
example by measuring the time with the same
computer as where the trade took place. The prop-
er volatility of an asset will be the volatility as
measured in the proper time of the asset.

2 Time Dilation
As we know from my bike ride the complexity of
space-time is not apparent at low speeds. High
speed velocity leads to several unexpected effects,
like time dilation, length contractions, relativistic
mass, and more. All these effects can be predicted
using Einstein’s special relativity theory. The time
elapsed for a stationary observer T and a moving
observer T̂ is related by the simple, yet powerful
formula

T = T̂√
1 − v2

c2

, (1)

where v is the velocity of the moving observer,
and c the speed of light in vacuum. See appen-
dix A for a short summary of one way to come up
with this formula.

2.1 The Twin “Paradox”

Special relativity induces effects that can seem
counter intuitive at first. Probably the best
known of these is the twin paradox (also known
as the clock paradox), see for example Taylor
and Wheeler (1992), Sartori (1996) Tipler and
Llewellyn (1999), Ellis and Williams (2000). As
the twin paradox will play an important role in
space-time finance a short introduction to the
topic is in place. The twin paradox is basically
about two identical twins, let’s name them Tore
and Kjell. Tore is leaving earth in a spacecraft
that travels at a constant velocity of 80% of the
speed of light, 0.8c, to the star Alpha Centauri
approximately 4.2 light years away. When the
spaceship reaches Alpha Centauri it instanta-
neously turns and returns to earth.

The paradox arises because either twin can
claim it is the other twin who is in motion rela-
tive to him. But then each twin should expect to
find his twin brother younger than himself.
The mistake is that we assume the situation is
symmetric for the two twins. Einstein had pre-
dicted there had to be an asymmetry, and that
the twin leaving in the spaceship end up being
younger. In the 1950s and 1960s there was a
lively discussion over the twin paradox.
Philosophy Professor Dingle (1956) published a
paper in Nature where he attacked Einstein’s
relativity theory. He claimed that the twin para-
dox could not be resolved and that for this rea-
son the special relativity theory was inconsis-
tent. Along followed a series of papers dissect-
ing the twin paradox (see Sartori (1996) and
Marder (1971) for a good reference (1971) for a
good reference list). The theoretical discussion
turned out in Einstein’s favor.

A few years later the asymmetric solution to
the twin paradox was experimentally tested.
Haefele proposed flying atomic clocks around the
earth, (Haefele 1970, Haefele 1971), and carried it
out in collaboration with Keating, in 1971. After
flying highly accurate atomic clocks around the
world, they compared their readings with identi-
cal clocks left on the ground. The results where
unmistakable: time ran more slowly in the air-
plane than in the stationary, by the exact amount
predicted by Einstein’s theory, (Haefele and
Keating 1971b, Haefele and Keating 1971a).

Back to the twins. The twin leaving in the
spacecraft has to accelerate and decelerate to get
back to earth. This makes the situation asym-
metric between the two twins. An observer that
has to accelerate before reunion by someone that
has moved at a uniform velocity (inertial frame)
must have traveled faster. However the accelera-
tion itself is not affecting time directly, only
indirectly because acceleration affects velocity.
This hypothesis, implicit used by Einstein in
1905, was confirmed by the famous time decay
experiment on muons at CERN. The experiment
accelerated the muons to 1018 g, and showed that
all of the time dilation was due to velocity Bailey
and et al. (1977). The twin paradox and its time
dilation will be the foundations for much of our
space-time finance. Several other experiments

are consistent with the time dilation predicted
by the special relativity theory.

2.2 The Current Stage of Space-time
Finance

A relevant question is how fast we need to move for
space-time finance to have any practical implica-
tions. The relativity theory already has practical
implications on navigation, metrology, communi-
cation and cosmology. It turns out that we already
today have the technology and people to conduct
an experiment with measurable effects on space-
time finance. The technology in question is the
space shuttle. The space shuttle has a typical veloc-
ity of about 17,300 miles per hour (27,853 kph). Let
us for simplicity assume a dollar billionaire got a
free ticket to travel with the space shuttle. Further
assume he leaves the 1 billion dollars in a bank
that pays interest equivalent to 10% annually com-
pounding, but with compounding every thousand
of a second to make the calculation more accurate.
The speed of the space shuttle is 7,737 meters per
second. If the billionaire travels one year with the
space shuttle, or 31,536,000,000 thousands of sec-
onds, then the time gone by at earth is

T = 31, 536, 000, 000√
1 − 7, 7372

299, 800, 0002

≈ 31, 536, 000, 011

If the billionaire spends one year on earth
according to his wristwatch he will receive
$100,000,000.00 in interest income, while he
will receive $100,000,000.04 in interest rate
income if staying in space. That is a difference of
4 cents. This is a measurable quantity of money,
but of course not economically significant,espe-
cially not for someone already a billionaire. The
barrier to significant profits is that we are at a
very early stage of space travel.

3 Advanced Stage of
Space-time Finance
3.1 Relativistic Foreign Exchange
Rates
When, and if, humans develop large spacecraft civ-
ilizations that travel at speeds significant to that of
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light, why not also have them develop their own
currencies? We will now extend the theory of cur-
rency exchange to a world with stationary and
moving civilizations.To simplify assume there are
only two civilizations. One is stationary, for exam-
ple earth, and one is moving relative to earth, for
example a large space station. Denote the currency
on the space station by Moving Currency Dollars
(MCD) while on earth we simply assume everybody
are using EURO (EUR). The space station has not
left earth yet. Further assume the continuously
compounded rate is rm and r in the spacecraft
economy and on earth respectively. The assump-
tion of constant rates can easily be extended to sto-
chastic interest rates. So far this is just like having
two different currencies on earth. Let’s say the spot
currency exchange rate is quoted as MCD per EUR,
H = MCD

EUR . To prevent arbitrage the forward rate F
expiring at a future earth time T, must then be

F = He(rm −r)T ,

Assume now that the space station leaves earth
at a uniform speed v to return when the curren-
cy forward expires (we are ignoring accelera-
tion for now). It is now necessary to take into
account relativistic interest rates. Denote the
rate on earth as observed from the moving
frame r̂, and similarly the rate on the spacecraft
as observed in the stationary frame r̂m . To avoid
any arbitrage opportunities we must have

r̂ = r√
1 − v2

c2

,

and

r̂m = rm

√
1 − v2

c2
.

The currency forward as observed from the
spacecraft time must be

F̂ = He(rm − r̂)T̂ .

Similarly the forward price at earth must be

F = He(r̂m −r)T ,

which naturally implies F = F̂ to prevent arbi-
trage opportunities. Similar relationships will
hold between any dividend yields or cost of carry
on any asset.

A special, but unlikely case is when the proper
risk free rates are identical in the two economies
rf = r. In this case the stationary earth currency
EUR will appreciate against the other currency.
The intuition behind this is simply that if we
assume the two worlds start with exactly the same
resources and technology, the productivity on the
moving space station will still be much lower
because time and all physiological processes are
slowed down. The total rate of return can of
course still be higher in the space station if the
rate of return is high enough to offset time dila-
tion. The space-time equivalent rate (break-even
rate) of return on the space station is simply

rm = r√
1 − v2

c2

.

Consider for instance a rate of return of 5% on
earth, and that the space station moves at half the
speed of light. Then the rate of return on the space
station must be 5.77% per year to give the same
return per year as on earth. Traveling at 98% of the
speed of light the rate of return on the space sta-
tion must be 25.13% to offset the time advantage
(faster moving time) of the stationary civilization.

4 Space-time Uncertainty
Geometric Brownian motion assumes constant
volatility. This can only be true in an inertial frame
where everybody are traveling at the same speed. If
we are comparing geometric Brownian motion (or
any other stochastic process) in different frames
then strange effects crop up.

4.1 Relativistic Uncertainty
In the case of one moving frame and one station-
ary frame we will no longer have one volatility
for a given security, but two. If the asset trades at
earth we will have

• the volatility of the asset in the stationary
frame, σ , (for example earth—the proper
earth volatility).

• the volatility of the earth asset as observed
in the moving frame, σ̂ , (spacecraft).

Consider a spacecraft leaving earth at speed sig-
nificant to that of light, to return at a later time.

Mr. X at the spacecraft buys an option on IBM
corp. that trades at one of the main exchanges
on earth from Mrs. Y that lives at earth. For sim-
plicity let us assume that the stock price in an
inertial frame follows a geometric Brownian in
its stationary frame on earth5

dSt = µStdt + σ Stdz.

In the frame of the moving observer (the space-
craft) what volatility must be observed for the
stock price to make the option arbitrage free with
respect to earth-inhabitants trading in the same
option? The volatility measured by someone on
earth is naturally σ . Let the volatility measured by
someone in spacecraft time be σ̂ . As we already
know from Einstein’s theory the time measured
by each observer is different. For a European
option the value naturally depends on the uncer-
tainty in form of σ

√
T and not on σ or T independ-

ently. This holds also for American options,
although it is harder to establish (a mathematical
proof is given by Carr (1991)). A contingent claim
will in general depend on what we will call the
uncertainty-time or volatility-time, σ

√
T. To avoid

any arbitrage opportunities the relationship
between the volatilities as observed in two differ-
ent frames must be

σ
√

T = σ̂

√
T̂

σ̂ 2 = σ 2

T̂√
1 − v2

c2

T̂

σ̂ = σ

(
1 − v2

c2

)− 1
4

.

Similarly we can naturally have an asset trading
in the moving frame. The proper volatility of
that asset in it’s own frame we name σm . The
same volatility as observed from the stationary
frame we name σ̂m . To avoid any arbitrage oppor-
tunities we must have

σm

√
T̂ = σ̂m

√
T

σ̂ 2
m = σ 2

m

T
√

1 − v2

c2

T

σ̂m = σm

(
1 − v2

c2

) 1
4

.
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These are relativistic volatilities. The geometric
Brownian motion of an asset trading on earth, as
observed by a moving observer, must behave
according to what we will call a velocity-moved
geometric Brownian motion. The various param-
eters in the model are shifting their value due to
the velocity of the moving frame,

dSt̂ = r̂St̂dt̂ + σ̂ St̂dz

Similarly, the velocity-moved geometric Brownian
motion of an asset trading in the space station, as
observed by a stationary observer, must be

dSt = r̂mStdt + σ̂mStdz

4.1.1 Invariant Uncertainty-time
Interval
From the special relativity theory it is well
known that the time interval and distances will
look different for different observers, due to time
dilation and length contraction. However the
space-time interval6 is invariant, i.e. the same for
all observers. A similar relationship must exist
when it comes to uncertainty:

The volatility of an asset, σ and the time, T, will
look different for different observers. However
the uncertainty-time interval, σ 2T, of an asset
will be the same for all observers.

Invariant uncertainty-time interval is actually a
condition for no arbitrage in space-time finance.
The “shape” of the uncertainty-time interval can
naturally be different for different stochastic
processes. Instead of for instance σ

√
T we could

have a square root 
√

σ
√

T, or a σ
3
2

√
T volatility

process.7 Time and uncertainty are interrelated
and can not be separated. Even if different
observers observe different volatility and time for
an asset trading in a given place in space and time
(over time), they will all agree on the uncertainty-
time. For this reason all agree on the same price
for the derivative security, based on the assump-
tion of flat space-time. In addition to velocity we
must also take into account curved space-time, as
we will soon do. Figure 1 illustrates relativistic
time T, volatility σ , and volatility-time σ

√
T for a

security trading on earth (stationary frame), as
observed from a moving frame at different veloci-
ties. The time frame is one year in stationary time.
Volatility and volatility-time is measured along the

left y-axis, and time against the right y-axis. Time
and volatility evidently varies with the velocity,
while volatility-time remains constant.

5 Is High Speed Velocity
Possible?
We have seen that a trip with today’s spacecraft
have a measurable effect in terms of space-time
finance. However, to say that the effects are eco-
nomically significant would be a gross overstate-
ment. For this to happen we need much faster
means of travel.

Science fiction books and movies often involve
spacecraft traveling at extremely high velocities. It
is important to also have in mind that the high
velocity travel must be inside the laws of physics,
and it must also be physiological possible for
humans to survive the trip. For example a space-
craft accelerating at 1000g would get very fast up
to high speeds, but the g-force is far beyond what
any human can withstand. We will here give a
short summary of what actually can be possible in
the future when it comes to high velocity travel.
Marder (1971) discusses the theoretical and tech-
nological limits of space travel, and this section
will take basis in his calculations (see also Barton
(1999) and Nahin (1998)).

Let us assume we have a spaceship accelerat-
ing at 1g. As this is equivalent to the gravitation at

earth such a spaceship would naturally be a very
comfortable place for a human civilization. When
we talk about gravitation we must be careful. We
will assume the 1g gravitation is in the frame of
the space traveler. From earth the gravitation of
the spacecraft will be observationally different.
Here the acceleration of the spacecraft will
approach zero as the spacecraft approaches the
speed of light. Even if the special relativity is valid
only for observers moving with a constant velocity
(inertial frame) this does not mean that we can
not use it to predict what will happen in an accel-
erated frame. To do this we will make use of the
“clock hypothesis”. The clock hypothesis is basi-
cally a statement about the instantaneous rate of
a (suitable)8 clock depending only on its instanta-
neous speed. Let us define v as the speed of the
spacecraft as measured from the earth frame.
Further assume that at any instant there is a sec-
ond system moving at a fixed speed V (earth
frame) moving parallel to the spacecraft (co-mov-
ing frame). The spacecraft speed in the second sys-
tem is u. If we divide the journey of the spaceship
into infinitely small time steps, dt, we can assume
that the change in velocity, dv, is close to zero in
such a brief time interval. In other words we can
still calculate the time dilation over a very short
time period using the special relativity theory

dt̂ =
√

1 − v2

c2
dt. (2)
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Figure 1: Relativistic Volatility



The interval, T̂, of “proper time” registered by the
accelerated clock in its movement between
t1 and t2 can now simply be calculated by inte-
grating over equation (2)

T̂ =
∫

dt̂ =
∫ t2

t1

√
1 − v2(t)

c2
dt, (3)

where t2 − t1 > T̂ is the elapsed time between two
events as measured on earth (stationary frame).
Furthermore, we have to be aware that the con-
stant acceleration α, as observed on the space-
craft (the proper acceleration), will look different
from earth. The acceleration in the earth frame, a
is equal to (see appendix B)

a = c
dβ

dt
= α(1 − β2)3/2, (4)

where β = β(t) = v
c the speed of the spacecraft

in percentage of light in the earth frame.
Assuming the speed of the spacecraft is zero,
β(0) = 0 at the start of the journey, t = 0, and
β(t) = β we can integrate

∫ t

0

dβ(u)

du

(1 − β(u)2)3/2
du =

∫ t

0

α

c
du,

this gives us

β√
1 − β2

= αt

c
. (5)

Solving for β we get

β = αt/c√
1 + (

αt
c

)2
. (6)

Assume the spaceship is leaving earth at earth
time t1 = 0 and spaceship time t̂1 = 0, that is
t1 = t̂1 at the start of the journey. The spaceship is
constantly accelerating at 1g as measured on the
space ship for T̂ spacecraft years (T earth years).
Next the spacecraft decelerates at the same rate
until the spacecraft is at rest with respect to the
stationary frame (earth). This means that the
spacecraft travels for 2T̂ spacecraft years away
from earth. The spacecraft then follows the same
procedure back to earth. The whole trip takes 4T̂
spacecraft years and 4T earth years. The maximum
velocity of the spacecraft is reached at time T̂ and

is given by replacing t by T in equation 6. We thus
find that the maximum velocity as observed on
earth is

βmax = αT/c√
1 + (

αT
c

)2
. (7)

To find the distance as measured from earth that
the spacecraft will reach we need to integrate
once more

x(t) =
∫ t2

t1

v(t)dt = c(
√

α2t2 + c2 − c)

α
. (8)

The maximum distance in light years as meas-
ured from earth that the spacecraft will reach
after 2T earth years (2T̂ spacecraft years) is 2x(T).

We can next find the proper spacecraft time
between event t1 = 0 (the spacecraft leaving
earth) and event t2 (the spacecraft returning to
earth) by integrating

T̂ =
∫ t2

t1

√
1 − β2dt =

∫ t2

t1

dt√
1 + α2 t2

c2

, (9)

carrying out the integration we get 

T̂ = c

α
ln

(
αT

c
+
√

1 + α2T2

c2

)
, (10)

which can be simplified further to 

T̂ = c

α
sinh−1

(α

c
T
)

, (11)

or in terms of the stationary reference frame
time

T = c

α
sinh

(α

c
T̂
)

, (12)

where sinh( ) is the hyperbolic sine function and
sinh−1( ) is the inverse hyperbolic sine function.

Volatilities in an accelerated frame
We now have the tools to look at volatilities in an
accelerated frame. The fact is that geometric
Brownian motion can only exist at a constant
velocity, in an inertial frame. With any form of
acceleration the drift and also the volatility of
the geometric Brownian motion will as a mini-
mum be a deterministic function of the velocity,
as observed from any other reference frame.

From mathematical finance it is well known
that we can calculate the global volatility σ over
a time period starting at t1 ending at t2 from a
local time dependent deterministic volatility b(t)
by the following integral

σ 2 = 1

t2 − t1

∫ t2

t1

b2(t)dt. (13)

In a similar fashion we can calculate a velocity
dependent deterministic volatility in an acceler-
ating frame 

σ̂ 2 = 1

T̂

∫ t̂2

t̂1

b̂(t̂; v)2dt̂

= 1

t2 − t1

∫ t2

t1

σ 2dt√
1 + α2 t2

c2

,

which gives the relationship between the volatil-
ities in the two frames

σ̂ = σ

√
c

Tα
sinh−1

(
Tα

c

)
,

or in terms of the volatility of an asset traded in
a moving frame, as observed from the stationary
frame,

σ̂m = σm

√√√√ c

T̂α
sinh

(
T̂α

c

)
.

Numerical examples
Table 1 illustrates the consequences of a space-
craft journey accelerating at 1g. If we for instance
take a look at a trip that takes ten years as meas-
ured by a wristwatch in the spacecraft, the time
passed by on earth will be 24.45 years at return.
The spacecraft reaches a maximum speed of
98.86% of the speed of light after 2.5 years. What a
velocity! And remember, we are only at 1g! The
next column tells us that over 5 years, T̂ = 5, the
spacecraft will be able to travel a distance of 10.92
light years (as measured from earth). How can the
spacecraft travel more than 10 light years in only
5 years? The answer is naturally because the time
dilation on the spacecraft. Recall that on earth
12.71 years have gone by at the same time. The dis-
tance as measured from the spacecraft will natu-
rally be different.
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Consider next the effects on space-time fi-
nance. The relativistic volatility shows the global
volatility, i.e. the “average” volatility the space
crew would have measured over the whole trip
for a stock that on earth had 20% constant volatil-
ity, as measured on earth.

The last column is the maximum level the
instantaneously volatility attains, when the space-
craft reaches its maximum velocity.

5.1 High Velocity Spaceship

Today’s spaceships accelerate mainly using propul-
sion technologies. The energy content we get out
of contemporary fuels is low. Uranium fission
yields about 6 million times as much energy per
kilogram as the burning of hydrogen. Fusion of
hydrogen into helium (hydrogen bomb) yields
another factor of 10. The most efficient energy for
a given mass is achieved by complete annihilation
of matter with antimatter. This turns all mass into
energy, and gives about 140 times more energy per
kilogram than hydrogen fusion. One day we might
be able to have spaceships where acceleration is
achieved by an matter-antimatter annihilation
engine (photon engine). This is the most efficient
engine we can build, and it is based on the funda-
mental laws of physics. For more information on
this see Marder (1971).

One of the dangers with such trips would be
that space is far from a perfect vacuum. Traveling
through space involves frequent collisions with

stray hydrogen atoms (about one for each cubic
centimeter, Nahin (1998)). The result would be a
high irradiation of the entire ship, with a lethal
dose of gamma rays. If we ever can build protec-
tive shields for this is another questions. Luckily
there is possibly an even faster and safer ways for
high velocity travel, but because of limited space I
will have to shun away from a discussion on this.

6 Black-Scholes in Special
Relativity
In their famous price formula Black-Scholes-
Merton (BSM) assumed constant volatility (geomet-
ric Brownian motion). However as we know today,
the BSM formula is also fully consistent with deter-
ministic time-varying volatility. This means that it
is also consistent with a deterministic velocity-
dependent volatility.

In space-time finance we will have several ver-
sions of the BSM formula. The standard form of
the BSM formula is simply a special case for a iner-
tial frame as observed from the same frame. For
an option trading on the spacecraft, on a security
trading at earth, in the earth currency EUR we
will have to use the velocity-moved geometric
Brownian motion as the basis for the modified
BSM formula

dSt̂ = r̂St̂dt̂ + σ̂ St̂dz.

This gives us

c = SN(d1) − Xe− r̂T̂ N(d2),

where

d1 = ln(S/X) + (r̂ + σ̂ 2/2)T̂

σ̂
√

T̂
,

and

d2 = σ̂

√
T̂.

Similarly for an option trading at earth on an
asset trading at the spacecraft we would have to
replace the volatility and the risk-free rate in the
Black-Scholes formula with σ̂m and r̂m . Further we
could have an option trading on the spacecraft in
the spacecraft currency on an asset trading on
earth, or an option trading on earth in the earth
currency (EUR) on an asset trading on the space-
craft. This would complicate it further, but can
easily be valued by making appropriate changes
for relativistic effects in addition to using the
well known techniques to value foreign equity
options struck in domestic currency, as described
in detail by Reiner (1992), see also Haug (1997).

6.1 Velocity Sensitivities

When trading options it is important to keep track
of risks, efficiently summarized by the option sen-
sitivities with respect to the key parameters, delta,
gamma, vega, theta, etc. (see Haug (2003)). In the
age of space-time finance it will naturally also be
essential to know the derivative instruments’ sen-
sitivities to changes in velocity. Following is the
sensitivity of a stationary volatility to a small
change in velocity as observed by a moving observ-
er (here we for simplicity ignore any acceleration).

∂σ̂

∂v
= vσ

2c2
(

1 − v2

c2

) 5
4

.

This partial derivatives is positive and tells us
that the stationary volatility as observed by a
moving observer, in the moving frame, will
increase the faster she travels.

8 Wilmott magazine

Roundtrip Roundtrip Maximum Distance Volatility Maximum
time 4T̂ time 4T Speed % c light years σ̂ b̂(v(t))

1 1.01 25.24% 0.065 20.111% 20.332%
2 2.09 47.46% 0.264 20.445% 21.317%
3 3.31 64.92% 0.610 21.003% 22.932%
4 4.75 77.47% 1.127 21.791% 25.151%
5 6.51 85.91% 1.849 22.815% 27.956%

10 25.43 98.86% 10.922 31.891% 51.517%
15 92.85 99.91% 44.527 49.759% 97.927%
20 337.40 99.993% 166.774 82.146% 186.599%
30 4,451.94 99.99996% 2,224.030 243.637% 677.792%
50 775,040.09 99.99999% 387,518.106 2490.044% 8943.021%

TABLE 1: SPACECRAFT ACCELERATING CONTINUOUSLY
AT 1G (9.81 M/S2), (C = 299,800,000 M/S).



The sensitivity of volatility in the moving
frame to a small change in velocity, as observed
by an observer in the stationary frame, is given by

∂σ̂m

∂v
= − vσm

2c2
(

1 − v2

c2

) 3
4

.

As expected this partial derivatives is negative.
This implies that uncertainty decreases the
faster the moving frame moves as observed from
a stationary observer.

7 Relativity and Fat Tailed
Distributions
The distribution of many physical phenomena,
including stock price returns and commodities,
often exhibit fat tails. Empirically the returns are
typically non-normally distributed, as opposed to
for instance geometric Brownian motion. There
can be many reasons for this phenomenon. Here
we are interested in what physical laws that can
induce fat tailed distributions. Assume we observe
the volatility from two moving frames with differ-
ent velocity, and then look at the “portfolio”
volatility. If we for simplicity assume that each par-
ticle has a normal distribution, the combined dis-
tribution of the two particles will be fat tailed and
leptokurtic, with Pearson kurtosis larger than 3.

7.1 Stochastic Volatility

In the real world the velocity of a single particle
or a system of particles will typically change
randomly over time. According to quantum
mechanics and Heisenberg’s uncertainty prin-
ciple, it is not possible to simultaneously have
perfect knowledge of both position and
momentum of a particle (Heisenberg 1927).
With uncertain velocity this will lead to sto-
chastic uncertainty-time σ

√
T, where both the

volatility σ and the time T will appear stochas-
tic. More precisely , with background in relativ-
ity theory stochastic velocity v will give us
apparently stochastic volatility and time (sto-
chastic clocks). The idea of using a stochastic
clock to generate stochastic volatility (uncer-
tainty-time) is not new to finance. It dates back

to the 1970 PhD thesis of now Professor Clark,
later published in Econometrica, Clark (1973).
Stochastic clocks have later been used as the
basis for stochastic volatility models (see for
instance Geman, Madan, and Yor (2000), Carr,
Geman, Madan, and Yor (2003) and Carr and
Wu (2004)). Instead of Brownian motion they
consider stochastic time changed Brownian
motion.

This literature makes few or no claims about
what drives the stochastic clocks. At a recent talk
at Columbia University (March 2004) Peter Carr
indicated that trading volume could drive it, news
coming out etc. In space-time finance we need only
consider what physical laws that possibly drive sto-
chastic clocks and volatility. We can assume veloci-
ty is stochastic and that the apparently stochastic
clock simply is a deterministic function of the sto-
chastic velocity.

Do we need to wait for the age of high veloci-
ty spacecrafts before stochastic velocity changed
processes will have any practical implications on
mathematical finance? There is a possibility that
stochastic velocity and the relativity theory
already today is what drives at least part of the
stochastic volatility observed in financial mar-
kets, as well as any other stochastic uncertainty.
The main question is probably if relativity here
at earth has any economically significant impact
on the stochastic part of volatility.

Even if we so far have assumed that the
earth is an inertial frame where we all travel at
approximately the same speed with respect to
light, this is not true when we are moving down
at particle level. All physical macroscopic
objects, like people, cars, buildings are in gener-
al travel at the same speed relative to light (even
including people traveling with a concord air-
plane). At the particle level, however, there are
lots of particles traveling at very high speeds, or
even at the speed of light. Particles are all the
time emitting and absorbing photons, in the
form of visible light or black body radiation.
Every single particle, even photons in reality
have their own clock. The clock in a free moving
photon is from the special relativity theory
“frozen”: traveling at the speed of light we can
cross the whole universe without any proper-
time going by. A photon emitted from a particle

is accelerating from zero speed to c basically
instantaneously. This dose not mean we are
measuring the time for every single particle
here at earth, we measure the time in form of
the time of macroscopic objects only, using
atomic stationary clocks. This even if we all the
time are affected by particles where the time
and velocity are highly different from the aver-
age speed of the particles that makes up for
example your body, we are not adjusting for
this directly in our formulas. In the earth frame
we measure the time as it was moving at one
rate using atomic stationary clocks. So instead
of observing stochastic clocks in other frames,
they all show up as stochastic volatility, and for
this reason stochastic uncertainty-time.

The number of particles that affect a stock
through corporate activities etc. at any given time
is just astronomical and also the number of parti-
cles affecting a stock price is varying partly ran-
domly partly, deterministic over time. It is possible
but not necessary that relativity theory for this
reason to some degree can explain stochastic
volatility for a security. To model the volatility of a
security at particle level requires modeling the sto-
chastic velocity and possibly other properties of
each “particle” affecting the security. This requires
super computers far more powerful than we can
dream about today (but who knows what’s around
the “corner”). This would even include the physics
of psychology: the human brain and its emotions
that naturally lead to trades, at a quantum physics
level.

8 General Relativity and
Space-Time Finance
We have so far limited ourselves to the special the-
ory of relativity. In 1916 Albert Einstein published
his general relativity theory. The theory describes
how gravity affects space-time. In the case of a
spherical symmetric body (like the earth, sun or a
black hole) Karl Schwarzschild (1873–1916) was
able to come up with a beautiful closed form solu-
tion (in 1916). Just before his death, from a battle-
induced illness, Karl Schwarzschild sent his closed
form metric solution to Einstein. Einstein wrote to
him “I had not expected that the exact solution to
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the problem could be formulated. Your analytic
treatment of the problem appears to me splendid.”
Karl Schwarzschild derived his closed form metric
from Einstein’s field equation. Einstein’s field
equation is given by

Rik − 1
2 Rgik − gik = κ

c2
Tik,

where  is the cosmological constant, often con-
sidered to be zero, and Tik is the energy momentum
tensor. The κ is Einstein’s gravitational constant:
κ = 8π G

2c where G is the Newtonian constant of grav-
itation, and c is the speed of light in vacuum. In
many cases Einstein’s field equation is very hard to
solve and often requires numerical methods.
Luckily most objects in the universe are spherical
and we can use the closed form Schwarzschild met-
ric for most practical problems. In time-like form
the Schwarzschild metric is given by9

dτ 2 =
(

1 − 2M

r

)
dt2 − dr2(

1 − 2M

r

) − r2dφ2 (14)

where τ is the proper time (wristwatch time), M is
the mass of the center of attraction as measured in
unites of meters, r is the reduced circumference
(the circumference divided by 2π ), t is the far away
time, φ is the angle and has the same meaning in
Schwarzschild geometry as it does in Euclidian
geometry, and rdφ is the incremental distance
measured directly along the tangent to the shell.
The Schwarzschild solution gives a complete
description of space-time external to a spherically
symmetric, non-spinning, uncharged massive
body (and everywhere around a black hole but at
its central crunch point, the singularity; see Taylor
and Wheeler (2000) and Misner, Thorne, and
Wheeler (1973) for excellent introductions to this
topic). Actually the vast majority of experimental
tests of general relativity have been tests of the
Schwarzschild metric. All test results have so far
been consistent with Einstein’s general relativity
theory (?). The general relativity theory has great
implications for the General Position System (GPS).
The GPS system consist of multiple satellites con-
taining atomic clocks. The elapsed time for each
atomic clock has to be adjusted for both the special
and general relativity. This because the effect of
earth’s gravity is lower far from earth and also the

speed at which the satellites travel affects time.
The GPS system is actively used by the military for
high precision bombs, as well as for civilians like
myself, to navigate the car to a new restaurant to
meet up with a date.

It is the time dilation caused by gravity that is
of greatest interest to space-time finance. The time-
like Schwarzschild metric leads us to the formula
we need:

dτ = Tshell = T

√
1 − 2M

r
, (15)

where Tshell is the elapsed time of a clock that is at
the radius r on the shell, and T is the time leaps of
a far-away time. The far-away time will in practice
refer to a clock that is so far away from the gravi-
tation source that the effects of gravitation on
time is insignificant compared to the calculation
we are doing. From equation (15) we can see that
the time at the shell (and all physical processes)
will go slower than the far-away time.

Next lets take a look at a numerical example
(this is also the explanations behind The Collector
cartoon in this issue, as well as the animated car-
toon story “Black Hole Hedge Fund”). The mass of
the sun is 1477 meters, assume a black hole with
10 solar masses (14.77 kilometers). The Schwarzs-
child radius of the black hole is 2M = 2 × 14770
= 29, 540 meters. This is the radius where there is
no return (except for Hawking radiation), even
light itself will be caught by the Schwarzschild
radius. Assume a space station is hovering around
the black hole at a radius of 29,552 meters. As the
mass of the earth is insignificant to that of the
black hole we can consider the time elapsed at
earth as the far-away time. For one year passed at
the space station we will have the following num-
ber of years passing by on earth

Tearth = Tshell√
1 − 2M

r

= 1√
1 − 29,540

29,552

≈ 50

That is, for every year passing by in the space sta-
tion 50 years will be passing by on earth. Assuming
next that we place cash at earth with 10% annual
return. Over 50 years on earth one million dollars
will grow to

1, 000, 000 × 1.150 = 117, 390, 853

But remember only one year has gone by in
the space station, so what is its equivalent annu-
al rate of return?

1, 000, 000 × (1 + r) = 117, 390, 853

r = 117, 390, 853

1, 000, 000
− 1

= 11, 639%

That is the annual return on the space station is an
incredible 11,639%. This explains how and why
Einstein in the cartoon can promise 10,000%
return from his black hole hedge fund. The addi-
tional 1,639% is simply his management fee!

Can we survive the tidal forces of
high gravity
If we should ever settle down in areas with very
strong gravitation it can have significant conse-
quences for space-time finance. An important
question is whether humans will be able to survive
the high tidal forces one would experience there.
A pilot will normally die of acceleration stress
when reaching about 10g, while a quartz wrist-
watch will probably still continue to work normal-
ly. In 1960, astronaut Alan Shepard experienced
12g during the re-entry of the Mercury spacecraft
Freedom 7 (Pickover (1996) p. 19). It is reason to
believe that even moderate g-forces (2-5g) will lead
to high stress on our bodies if exposed for a con-
siderable amount of time. We have to conclude
that at the current stage humans are not capable
to withstand g-forces high enough to settle down
in parts of the universe where the g-force is strong
enough to have significant effect on space-time
finance.

8.1 From Black Holes
to Black-Scholes
Many years ago I got hold of the book “From
Black-Scholes to Black-Holes”. The book was
interesting, but the title was misleading because
it had nothing to do with the relationship
between black holes and the formula of Black-
Scholes and Merton. To use the BSM formula any-
where near a black hole we need to modify the
original formula by taking into account the grav-
itational effects on volatility and time. Assume
we are hovering around a black hole, and want
to value an option trading on earth. Because the
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relatively much lower gravitation on earth we
can assume the earth time is far away time. By
some simple reflections and calculus we find
that the value must be

c = SN(d1) − Xe− r̂f Tshell N(d2), (16)

where

d1 = ln(S/X) + (r̂f + σ̂ 2
f /2)Tshell

σ̂f

√
Tshell

,

σ̂f is the volatility on the asset as observed from
the black hole at radius r, and σf is the far away
volatility, or basically the volatility of an asset
trading at earth as observed on earth:

σ̂f = σf

(
1 − 2M

r

)− 1
4

, (17)

and the relationship between the far-away risk-
free rate rf and r̂f as observed at the shell

r̂f = rf√
1 − 2M

r

.

(18)

Similarly the volatility of an asset trading at the
space station hovering around the black hole
would be

σ̂shell = σshell

(
1 − 2M

r

) 1
4

, (19)

where σshell is the proper volatility of an asset
trading at a space station hovering around the
black hole at radius r, and σ̂shell is the volatility
of the same asset as observed far away from the
gravitational field. The risk-free rate at the
spacecraft as observed from a far away observer
would be

r̂shell = rshell

√
1 − 2M

r
. (20)

When observing a moving frame near a gravita-
tional field we will naturally need to take into
account both the special and general relativity
theory.

9 Was Einstein Right?
When it comes to the special theory of relativity
was Einstein right? Many of the aspects of the rel-
ativity theory have been experimentally tested
with high precision, but other aspects of his the-
ory are not so well tested. We will here shortly
mention a few of the topics where there still are
untested aspects of the special and general rela-
tivity theory.

9.1 Alternatives to Einstein

Several alternative relativity theories all agree
with experimental results at least as well as the
special relativity theory. Out of 11 well known
independent experiments said to confirm the
validity of Einstein’s special relativity theory non
of these are able to distinguish it from for example
Lorentz’s relativity, Flandern (1998) or Taijii rela-
tivity, see Hsu (2000). Both Lorentz and Einstein
(1905) relativity theories are based on the principle
of relativity first discussed by Poincare in 1899.
Lorentz assumed a universal time, a preferred
frame and an luminiferous ether (a solid medium
that electromagnetic waves had to travel through).

In his 1905 paper Einstein denied the existence
of the luminiferous stationary ether that Lorentz
believed in. Lorentz acknowledge Einstein’s insight
in relativity theory but never gave up on the ether
theory, see Lorentz (1920). Later Einstein modified
his negative attitude to the ether and developed his
own theory about what he named “the new ether”
and also “gravitational ether”, see Einstein (1922)
and Kostro (1998):

The ether is still today one of the most inter-
esting and mysterious topics in physics. However
few physicists talk about the ether, today they
like to call it empty space or possibly Higgs field,
see Genz (1998) for a interesting introduction to
nothingness.

9.2 Constancy of the Speed of
Light?

In the special relativity theory Einstein’s second
postulate was that the speed of light is constant in
any frame. Einstein assumed clocks in an inertial
frame could be synchronized with a clock at the
origin of the frame by using light signals.
However to synchronize the clocks in this way we

must have an assumption of the speed of light. If
Einstein’s prescription to synchronize clocks is
used, then measured speed must be the speed of
light per definition. In other words the synchro-
nization of clocks and the measured speed of
light is closely connected (Reichenbach (1958).
The test of the universal speed of light therefore
leads to a circular argument. The currently most
advanced laboratory we have for measuring the
speed of light, the GPS system, confirms that the
measured speed of light does not change over
time or the direction of the satellite in orbit.
However it cannot tell us what the speed of light
is, and in particular not the one-way speed of
light (Reichenbach 1958, Flandern 1998, Hsu and
Zhang 2001). Long before Einstein’s time, Maxwell
(1831–1879) wrote

“All methods. . .which it is practicable to deter-
mine the velocity of light from terrestrial exper-
iments depend on the measurement of the
time required for the double journey from one
station to the other and back again. . .’’

Reichenbach (1958), Ruderfer (1960) and others
claim that Einstein’s second postulate cannot even
be tested. No physical experiment have been able
to test if the one-way speed of light is constant in
every direction (i.e. isotropic) as assumed by
Einstein. There are several extensions of the spe-
cial relativity theory that do not assume that the
one-way speed of light is constant. They do not nec-
essary claim that Einstein’s special relativity is
wrong, but that it simply is a special case of a more
general relativity theory.

If the one-way speed of light is not constant,
but only the two-way speed of light, the time
dilation in the twin paradox will still be there,
because it is based on two-way time dilation. A
possibly non-isotropic one-way speed of light
will naturally have an impact on time dilation
during a given point on the trip, but the end
result will still be the same when the stationary
and the moving frame re-unites.

Already in 1898 Poincare expressed his view
that the constancy of the speed of light is merely a
convention. Edwards (1963) replaced Einstein’s sec-
ond postulate with the assumption that only the
two-way (round-trip) speed of light is constant. Hsu,
Leonard, and Schenble (1996) has extended the
original formulations of Reichenbach’s extended
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simultaneity and Edwards’ universal two way
speed of light to be consistent with 4-dimensional
symmetry of the Lorentz and Poincare group. They
have named this extended-relativity. After
Einstein’s introduction of the special relativity
some physicists considered if they could construct
a consistent relativity theory, based only on the
first postulate. Ritz (1908), Tolman (1910), Pauli
(1921) and others had to conclude that this was
impossible. The reason was that they had failed to
recognize the association of a 4-dimensional sym-
metry only associated with the first postulate. rec-
ognized this and were able to come up with a rela-
tivity theory based only on the first postulate, and
that remarkably still agree with all experiments.
They named this generalized relativity theory Taiji
relativity. Taiji relativity does not conclude that
Einstein’s special relativity is wrong, it simply says
that the second postulate is unnecessary to con-
firm experimental results. Furthermore, it shows
us that our concept of time (e.g. Einstein’s relativis-
tic time or Reichenbach time) and also the speed of
light in the 4-dimensional symmetry framework
are human conventions rather than the inherit
nature of the physical world. Special relativity,
extended relativity, common relativity, and other
relativity theories are typically all a special case of
the generalized Taiji relativity. However Taiji rela-
tivity agrees on the experimental fact that the
speed of light is independent of the source velocity
(Hsu 2000, Hsu and Zhang 2001).

9.3 Faster than the Speed of Light?

In 1992 Professor Günter Nimtz and colleagues
at the University of Cologne reported faster than
light for microwaves using quantum tunneling.
When sending light “particles” (microwaves is
just another type of light/electromagnetic waves)
against a thick barrier one would think all the
light particles would be stopped. Quantum
mechanics tells a different story. According to
quantum tunneling there is always a small prob-
ability for the particle to jump through the bar-
rier. It is like a prisoner inside his prison cell try-
ing to walk through the wall. In our everyday life
we know this is impossible, but according to
quantum tunneling there is actually a positive
probability that the prisoner could jump
through the wall. The probability for this event
is naturally incredible small. Another expert at

quantum tunneling, Professor Chiao at universi-
ty of Berkley at California, claimed to be able to
send photons of visible light at superluminal
speeds (faster than light). However he was not
very concerned that this would make it possible
to send information backwards in time and dis-
rupt causality. His explanation for this is basical-
ly that the photons traveling through the barrier
was random and could for this reason not be
used to send any form of information.

At a physicist conference in 1995 Professor
Günter Nimtz played Mozart’s 40th symphony on
a walkman. The bizarre part was that he claimed
this was the recording from a signal sent at 4.7
times the speed of light. Many leading physicists
were, and still are, very skeptical to Professors
Nimtz results (Glegg 2001).10 If these and other
faster than light experiments are correct, we need
to reconsider an important postulate of special rel-
ativity: that there is an absolute speed limit of
light.

10 Traveling Back in Time
Using Wormholes 
So far we have discussed space-time finance with-
in the limitations of traveling forward in time
(time dilation). Time dilation, as predicted by the
relativity theory, is as we already have mentioned
confirmed by many physical experiments. If it
ever will be possible to travel backwards in time
is another question. One theoretical possible way
to do this is by using wormholes. A wormhole is
basically a short-cut through space and time.
Wormholes can possibly be created by strong
warping (bending) of space-time.

Wormhole physics can be traced back at least
to the paper by Flamm (1916). In their 1935 paper
Einstein and Rosen discussed a bridge across space-
time, today known as an Einstein-Rosen bridge.
The term “wormhole” had not yet been coined.
After their 1935 paper little work were done on the
subject until 20 years later when Wheeler (1955)
followed up on the topic. Over the years the physi-
cist community has come up with a variety of the-
oretical wormhole solutions. Most wormhole solu-
tions are practical, however, for neither space trav-
el nor time travel. The gravitational tidal forces
will rip humans apart. They can be strong enough

even to disrupt the individual nucleus of atoms.
The size of some wormholes (Wheeler wormholes)
are predicted to be as small as the Planck length,
10−35 cm. For humans to travel through such
wormholes clearly seem impossible. Still, even if
you cannot send a book through a telephone line
you can fax its content in the form of electrons or
photons. The admittedly speculative movie
“Timeline” uses the same idea to “fax” humans
through a tiny wormhole, basically by ripping the
body apart into its sub-atomic elements (electrons,
photons. . .). In this context is it worth mentioning
that in 1988 Morris and Thorne came up with a
theoretical wormhole system where humans
could possibly pass “safe” through in a reasonable
amount of time. By inducing a time-shift and
bringing such wormhole mouths together, one
would at least in theory create a time machine.
However, in contrast to time dilation in the relativ-
ity theory there is so far no physical experiments
that either can confirm or disprove the existence
of wormholes.11

11 Conclusion
Many aspects of the relativity theory are well test-
ed empirically. However, as we have pointed out
there are still many open questions. Even if we still
do not have all the answers to relativity, and there-
fore also not to space-time finance, I enjoy the idea
that space-time finance will play some role in the
future. Even quantitative finance can not escape
the fundamental laws of physics.

Appendix A: Special
Relativity and Time Dilation
Because many of the readers probably have little
or no background in relativity theory? we will
here shortly take a look at the math behind time
dilation in the special relativity theory. To really
exploit the special relativity theory we need the
Lorentz transformation, however when it comes
to the time dilation factor all we need is actually
Pythagoras theorem (and some reflections that
took Einstein many years). Assume that we have
a moving train. Inside the moving train we have
a light clock. The light clock is constructed from
one mirror on each side of the inside of train.

12 Wilmott magazine



The width between the mirrors we call w (the
rest length). What is the relationship between
the time it take for the light to go back and forth
between the mirrors as measured on the train
and on the platform?

The time measured by the moving observer,
T̂, must be

T̂ = 2w

c
.

The distance traveled by the light as seen from
the platform, p, must be longer than the dis-
tance as measured by an observer on the train.
Assuming the speed of light is constant, then
more time must have passed by for the light to
travel the longer path. In other words the plat-
form time between each light clock tick is

T = 2p

c
. (21)

The length p is unknown, but can easily be found
by using Pythagoras theorem a2 = b2 + c2

p2 = w2 + (
1
2 L
)2

p =
√

w2 + (
1
2 L
)2

,

where L is the distance traveled by the train
between each time the light reflect on the mir-
ror. We know the velocity of the train is v = L/T
which gives L = vT. Replacing this measurement
of p into 21 we get

T = 2p

c
=

2
√

w2 + (
vT
2

)2

c
.

Further we can eliminate w by replacing it with 

w = cT̂

2
.

This gives

T2 =
4
(

1
4 c2 T̂2 + 1

4 v2T2
)

c2

T2 − v2

c2
T2 = T̂2

T̂ = T

√
1 − v2

c2
,

Figure 2 illustrates the classical time dilation
example just given. A lot of apparently “paradox-
es” can here be made, for example assume the

train will reach the women in 3 seconds as meas-
ured by a clock on the train. The collector needs
4 seconds to save the women. The train is travel-
ing at 70% of the speed of light; will the collector
be able to save the women?

Appendix B: Relationship
between acceleration
in different frames
Here we will look at how to obtain the relation-
ship between the acceleration of a point P mov-
ing in the x direction in an inertial system G(x, t),
and its acceleration in a second, parallel, system
Ĝ(x̂, t̂), which is moving with the speed V along
the same direction. This section is based on
Marder (1971), except I am using slightly differ-
ent notation, as well as having fixed what
appears to be a typo in his calculations.

Assume v is the velocity of a point in G, and u
is the velocity in Ĝ then by the rules of adding
velocities under special relativity we have

v = u + V

1 + Vu
c2

,

and from the Lorentz transformation we have

T = T̂ + Vx̂/c2√
1 − V2/c2

.

Taking differentials we get

dv = du

1 + Vu
c2

− u + V(
1 + Vu

c2

)2

(
V

c2

)
du

= (1 − V2/c2)

(1 + Vu/c2)2
du,

(22)

dt = dt̂√
1 − V2/c2

(
1 + Vu

c2

)
. (23)

Now to get the acceleration a as observed in the
G frame we simply divide 22 by 23 and get

a = dv

dt
= (1 − V2/c2)3/2

(1 + Vu/c2)3

du

dt̂
. (24)
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where du
dt̂

is the acceleration in the Ĝ frame. If Ĝ
is the instantaneously co-moving system of the
point P, then u = 0, V = v, and let α = du

dt̂
, then

we can simplify 24 to 

a = dv

dt
= (1 − V2/c2)3/2α, (25)

which gives us the relationship between the
acceleration a as observed in G and the accelera-
tion α as observed in Ĝ.
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1. Already in 1922 there were more than 3400 papers writ-
ten about relativity, Maurice LeCat, “Bibliographie de la
Relativité,” Bruxelles 1924.
2. Haug (2002) touches upon some of the relativity theo-
ry’s implications for finance.
3. Larmor (1900) actually the first to introduce time dila-
tion, but in the context of ”ether theory.” In his paper
there is little or no discussion of the physical implications
of time dilation.
4. Larmor (1900) was the first to discover the exact space-
time transformation, today known as the Lorentz transfor-
mation. Lorentz probably did not know about Larmor’s
paper, the final rediscovery of this space-time transforma-
tion was actually done by Poincare (1905), based on
Lorentz’s earlier work. Lorentz himself clearly admitted this:

“My considerations published in 1904 . . . have
pushed Poincare to write this article in which he has
attached my name to the transformations which I
was unable to obtain. . .’’

The Lorentz transformation is given by

x̂ = x − vT√
1 − v2/c2

, ŷ = y, ẑ = z, T̂ = T − vx/c2√
1 − v2/c2

.

Voigt (1887) was the first to derive a type of 4-dimension-
al space-time transformation, which differs slightly from
the Lorentz transformation.
5. We could alternatively assume we had for instance sto-
chastic volatility. We will look at this later in the article.
6. That the wristwatch time, a.k.a. the proper time, is
invariant, independent of the reference frame, is one of
the well known results from the special relativity theory.
7. The square root volatility model was to my knowledge
first introduced by Heston (1993), in the form of a sto-
chastic volatility model. Lewis (2000) is a good reference
for an overview of other modeling choices for volatility.
8. For example an Einstein-Levine light clock.
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